THE OFFICE OF THE STATE CHIEF INFORMATION OFFICER
ENTERPRISE TECHNOLOGY STRATEGIES

North Carolina Statewide Technical Architecture

Domain White Paper

Data Architecture Technology Overview

STATEWIDE TECHNICAL ARCHITECTURE

STATEWIDE TECHNICAL ARCHITECTURE

Domain White Paper:
Data Architecture
Technology Overview

Initial Release Date: August 1, 2003 Version: 1.0.0
Revision Approved Date: Not Applicable

Date of Last Review: March 11, 2004 Version: 1.0.1
Date Retired:

Architecture Interdependencies:

Reviewer Notes: Reviewed and updated office title and copyright date. Added a hyperlink for
the ETS email — March 11, 2004.

© 2004 State of North Carolina
Office of the State Chief Information Officer
Enterprise Technology Strategies
PO Box 17209
Raleigh, North Carolina 27699-7209
Telephone (919) 981-5510
ets@ncmail.net

All rights reserved. No patt of the material protected by this copyright notice may be reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage
system without written permission from the copyright owner.

mailto:ets@ncmail.net

STATEWIDE TECHNICAL ARCHITECTURE

Mission Statement

The mission of Data Architecture is to establish and maintain an adaptable
infrastructure designed to facilitate the access, definition, management, security, and
integrity of data across the state.

ata and information are extremely valuable assets of the state. Data

Architecture establishes an infrastructure for providing access to high quality,
consistent data wherever and whenever it is needed. This infrastructure is a
prerequisite for fulfilling the requirement for data to be easily accessible and
understandable by authorized end users and applications statewide.

Data and access to data are focal points for many areas of the Statewide Technical
Architecture. Every application uses data in one way or another to operate. Data
Architecture influences how data is stored and accessed, including online input and
retrieval, outside application access, backup and recovery, and data warehouse
access. (See Figure 1.) An established Data Architecture is the foundation for many
other components of the statewide technical architecture, especially Application
and Componentware Architectures.

Datch & Onling
Data Architecture Ratrioval
{OLTP)

Batch & Online Outside

Input Insert,
Update, Delete Transactional Algpeltlﬁzt‘:;ln
TEELETTE) Data 2
Data Qutside
Warehouse | Application
OLAP, DSS Update

Backup/
Hecoveny

Figure 1. Data Architecture

http://irm.state.nc.us/techarch/chaps/chap4-11.gif

STATEWIDE TECHNICAL ARCHITECTURE

As information technology has progressed throughout the state, the state's data has
become distributed and defined differently by all the existing applications in all the
different agencies. Data is stored on multiple platforms using multiple formats,
application-specific designs, and a wide variety of semantics. Moreover, in the past,
the data formats and semantics adhered to application-specific standards only,
because no consistent agency or statewide standards were in place when the original
applications systems and corresponding databases were developed.

When Data Architecture is not explicitly designed and actively managed, an
unplanned data infrastructure emerges that may not meet existing and future
requirements:

e Applications may directly access data managed by other mission critical
transaction systems, thereby impacting the performance of those systems
(and the accuracy of the data).

e There is little reuse and sharing of existing data and data management
applications software. A significant number of resources are used to store
and maintain the same data in many places.

e There is little, if any, central data administration applied to the data, so data
is not consistently defined across the state.

e Sources for accurate up-to-date data (i.e., authoritative sources) are not
identified, managed, cleansed, or accessible.

e Itis difficult to identify how data flows through or is used by different
applications, thereby making data management extremely difficult.

Therefore, it is important to ensure that the statewide Data Architecture is
understood and used by project managers and application developers across the
state.

To appreciate how data is stored and maintained, it is important to understand the
types of applications that access data. There are two categories of application

processing, online transaction processing (OLTP) and online analytical processing
(OLAP).

When an application is used to perform mission-critical day-to-day operations, it is
called an online transaction processing system. OLTP systems are typically used by
many users simultaneously to perform data input, update, or retrieval. An OLTP
system executes atomic business functions, performing finite units of work,
typically in the form of one or several transactions at a time (e.g., a "renew vehicle
registration" transaction or a "change citizen address" transaction).

STATEWIDE TECHNICAL ARCHITECTURE

When a system is used for analysis, planning, and management reporting through
interactive access to a wide variety of information, it is called an online analytical
processing system. An OLAP system usually references summary data to answer
questions like "how much should be budgeted for office supplies next year?" or
"how many traffic accidents occurred on Main Street last year?" Data for OLAP
systems is typically extracted from OLTP applications and loaded or replicated to
special databases that comprise a data warehouse. Data warehouses are specially
designed to provide the type of information required for business analysis in an
enterprise or agency.

Although common data infrastructure architecture applies to both OLTP and
OLAP systems, there are special considerations for data stored and maintained in a
data warehouse for OLAP access. For more information about data warehouse
infrastructure and the processes involved in designing and maintaining a data
warehouse, refer to the Data Warehouse Architecture chapter.

With business needs constantly changing, new systems under development, and
existing systems being re-engineered, there is a growing need to make data available
to multiple applications executing across agencies and across the state. To
accomplish this goal, federated metadata should be used. Using federated metadata
ensures that data is:

e Defined consistently across the state
e Re-useable and shareable

e Accurate and up-to-date

e Secure

e Centrally managed.

Federated metadata facilitates data sharing within a single agency, between multiple
governmental organizations, and across the state. Federated metadata is covered in
more detail in the Federated Metadata technical topic later in this chapter.

The Data Architecture consists of the following technical topics, including the
recommended best practices, implementation guidelines, and standards, as they

apply:

o Federated Metadata

e Data Modeling

e Database Management System (DBMS)
e Data Access Middleware

e Data Access Implementation

e Data Security

STATEWIDE TECHNICAL ARCHITECTURE

Federated Metadata Overview

With the redesign of legacy systems to add new business functions,
changing legislation, and the emergence of web applications, the Federated
Metadata Repository has become a key enterprise tool for inter-and intra-
agency collaboration. This topic provides an overview of the Federated
Metadata Repository.

Data Modeling Overview

How data is modeled and designed inside an application can significantly

impact the way an application runs and how other applications can access
that data. This topic covers a basic overview of data modeling for OLTP

and OLAP applications.

Database Management System (DBMS) Overview

Database Management System (DBMS) addresses the Data Architecture
recommendations for projects selecting, designing, and implementing
database management systems. In order to meet existing and future
database needs, a relational database technology is recommended,
particularly for online transactional business applications.

An emerging technology in the database world is the object database
technology. Object databases are data management products specifically
designed for use with object-oriented programming languages. They
provide DBMS capabilities to objects created by object programming
languages, such as Smalltalk or C++. The DBMS topic provides an
overview of object-oriented databases. This database technology will be
documented further as the technology matures.

Data Access Middleware Overview

Data access middleware addresses the Data Architecture recommendations
for the implementation of data access middleware. Data access middleware
is the communications layer between data access programs and databases.

Data Access Implementation Overview

The Implementing Data Access topic is a key topic of this chapter. Data
access is a fundamental component of every application. This topic
discusses recommendations for implementing data access within an
application and to outside applications.

STATEWIDE TECHNICAL ARCHITECTURE

Data Security Overview

e Data security is an important piece of the Data Architecture and the
application security model. This topic provides an overview of data security
and discusses the best practices for protecting data.

Federated Metadata

In the past, the state's applications were developed independently from each other.
Application development was driven by federal or state legislative initiatives,
program rules, or business needs. This form of application development is
described as monolithic or stovepipe, where data is not reused and shared
enterprise wide but collected and duplicated in numerous databases within a single
agency and throughout the state. For example, names, addresses, and social security
numbers are stored and maintained in every application that needs that particular
data. It is difficult to determine which application's database stores the most current
or correct information. Storing and maintaining redundant copies of the same data
throughout the enterprise is time consuming and expensive.

In a typical monolithic or stovepipe environment, each application performs every
step of the process needed to complete the entire business function. Applications
do not share any logic or data across system or organizational boundaries. These
databases are designed for access by single applications within a single agency, not
for access by multiple applications in multiple agencies simultaneously. (See Figure
2.)

Acency A Aogency B
F ederal ‘State Federal ‘State Fed eral/State
Legislative . Legislative Leqgis ative
Initiative or Initiative or Initiative or
Business 1 Business Business
Heed Heed Heed
Application Application Application

Data

Figure 2. Monolithic or Stovepipe Application Developmrent

http://irm.state.nc.us/techarch/chaps/chap4-13.gif

STATEWIDE TECHNICAL ARCHITECTURE

The state has recognized the need for agency-wide and statewide data sharing and
data comparison. One of the obstacles for sharing data across the enterprise is that
the current data definitions implemented in existing databases have not been
consistent. Data definitions are determined during the data modeling phase, which
occurs early in the application development lifecycle. Over the years many different
data modeling philosophies have been utilized. Therefore, many anomalies have
been introduced into the way data has been defined and stored in databases. These
data modeling anomalies exist not only across agency boundaries, but also within
multiple applications in a single agency. Some examples of these anomalies are as
follows:

e Identification. How a record is uniquely identified. An example of an
identifier difference is where one database may store data about a North
Carolina citizen using "Drivers License Number", while another may store
data about the same citizen using "Social Security Number".

e Semantic. Different values associated with the same data element. An
example of a semantic difference is where one database may refer to
"Gender" as "Male" or "Female" and another may refer to "Gender" as "1"
or "2".

e Synonym. Different field names for the same data element. An example of a
synonym difference is where one database may refer to gender as "Sex" and
another may refer to gender as "Gender".

e Homonym. The same field name for different data elements. An example of
a homonym difference is where one database may refer to "Race" as it
relates to a person and another may refer to "Race" as it relates to an
election.

The state is now developing applications that cooperate and share data, both within
a single agency and between agencies. In this model, common data elements are
defined consistently even when they are stored in multiple databases and data can
be shared between applications. This type of data is referred to as federated data.

When federated data is defined consistently, data is described the same way in each
table where it is defined. (See Figure 3.) Definitions include traits such as name of
the field, length, number format, data format, and the values it can have. When the
data has the same format, it is much easier to exchange data across system and
organizational boundaries.

STATEWIDE TECHNICAL ARCHITECTURE

[ata Diefined
N b ntly
arrnas kil
Calane 5es

R T T T ey e
Gancar Gander | Carder
Char 1) Charit) Chari1)
Cinle Mol iy C T Faton il |y Tnde MNesci idion
| Male w Wahe (] Wl
r F e ale B Female F Femals
i nknewmn 1] s i Unkmowrn
Blknk Bl Specifed Ekank Bait e & il Hlank Hal Specified
- . 4 —
fgency 4 iata Sgeny i Mt
DS Focior aiod Panaeata Hopoemony Hic A S0 S
Diata Excange
Srandards

v

Lanverson
Hondine through
HWC S prvico Broker
or Interia ce Enging

L=@riar
wriegen 1)

Core Descriphion
I Male
FENElE
Unbennicd iy

Agency 4 Dota
Cybann

Data Detined
CAffzrently
Reauining

ZOMrs 0N

Figure 3. Using the Federated Metadata Repository (FMR) for Consistent Definitions and Exchange

The way to describe or define data is through metadata. Metadata is "information
about data." Metadata is stored in a repository containing detailed descriptions
about each data element. By using the formats described in the metadata repository,
whether the data resides in a single location or in multiple databases across the
state, the same data management principles apply. The state has an enterprise
metadata repository called the Federated Metadata Repository (FMR). It is used to
store agency and statewide metadata. Figure 4 shows an example of metadata for
one statewide data element standard in the FMR.

STATEWIDE TECHNICAL ARCHITECTURE

I e - BET B e B
7 .

Social Secunty humbar

A B-hgil rumber @55inec o an indwidua by e Soasl
| Security Adminismeton

i wa Fraramat: 13345673
[Bermmlmngt: | 11 posibons
iy, Type: INuimh er
Exchangs Format {1 23456758
Exchange Langth: 19 Bytes
Exchangs Type: Character
Shebge Foimat {13456
‘Swnge Langth: b1 Byless

Saagn Types {Charactar or Vanabla Chsracted

g, . Al gk el

Figure 4. An FMR metadata example.

Federated metadata can be implemented even if data is physically located in
disparate databases. Logically, if the data is modeled the same in each physical
location, application interaction will be much less complicated. Federated metadata
exchange standards simplify application integration for data sharing. When N-tier
application design techniques are deployed, reusable services are implemented to
access data that needs to be shared. When federated metadata exchange standards
are deployed, data is used consistently in each application.

Shared data is accessed through reusable services called by each application that
needs access to the data. Data can be shared through an interface, such as the
North Carolina Service Broker (NCSB). To access the data, each application sends
a request to the NCSB. The NCSB executes the service and returns a response to
the application. This model protects the data and ensures that the data retrieved is
accurate and consistent since it is being retrieved by proven application code.

The service used to access the data is typically written and owned by the application
and business users who control the original data. The owners understand exactly
how the data is stored and how to return accurate results. By writing a common
service, the owners of the data ensure that it is accessed in the form intended and
that inaccurate results are not returned to a user directly accessing the data who
does not understand how the data is structured. For example, a service that returns
drivers license information is one service available through NCSB. It was written by
DOT and can be accessed by multiple authorized agencies requiring that
information. (See Figure 5) The only access from outside applications to DOT

STATEWIDE TECHNICAL ARCHITECTURE

information is through this service, and no ad hoc access direct to the database is
allowed. Thus, security and performance are not unknowingly jeopardized.

FLETRIE =)
Yarigts

[T = /

. fril
= JLTT |
Uresnus
Wor Tardlge Iixrs
riemet | Apgmikeian HSCEE PoR — Wimps mop SErma Lk, e
Sarusr Zerear | Clent ke Sarnks
Brohsr ageniy

Bereine

\

ol -gsnes
Jarvics

Figure 5. North Carolina Service Broker (NCSB) excample

For more information about the NCSB, refer to the Application Communication
Middleware Architecture chapter and http://irm.state.nc.us/NCSB/.

Ultimately, business and program users within governmental organizations across
the state are responsible for the definition and the accuracy of data. Federated
metadata is defined collaboratively by business users throughout the state. The
Federated Metadata Repository effort to define federated metadata does not focus
on developing a massive data infrastructure. The data models are being developed
incrementally over time through ongoing projects. This effort provides shared
resources for data accessed frequently by multiple applications.

The state's Metadata Element Review Team consists of key data architects from
across the enterprise. The focus of the Metadata Element Review Team is to agree
on the models and semantics of federated metadata to be shared throughout each
agency and the state. In order to define federated metadata, the right people, who
have both the knowledge and the authority to negotiate federated definitions of
data, should be involved.

The Federated Metadata Repository stores information about proposed and
standard data elements. It also identifies statewide and agency data elements. (See
Figure 6.)

e Non-authoritative data elements are used by more than one agency, but no
agency can be identified as the authoritative source. For example, "Social

10

http://irm.state.nc.us/NCSB/

STATEWIDE TECHNICAL ARCHITECTURE

Security Number" is used in many applications and agencies across the
state, but no state agency issues Social Security numbers.

e Authoritative data elements are used by more than one agency, but an
agency can be identified as the authoritative source. For example, "Drivers
License Numbet" is used by more than one agency, but DOT issues the
drivers license and therefore is the authoritative source.

e The FMR can also store database information for each agency application.
When database information is documented and available, information is
more easily located and shared. By storing the appropriate database
information in the FMR, agencies automatically comply with North
Carolina Government Information Locator Service (NC GILS) and North
Carolina Public Records Law (North Carolina G.S. § 132-6.1 (b)).

Federated MAdtadzta Repositonry

Highw sy M- e

Cmalgn
nppllcss'h:n

wonsea
Angerprirt

st b ide

Figure 6. Sample Statewide and Inter-Agency Data Elements and Database Metadata Stored in
FMR

An example of database information for an agency is shown below. (See Figure 7.)

11

STATEWIDE TECHNICAL ARCHITECTURE

R 36 Ll I R e

r ; ¥

o ACCESSED USRS SHi0ns

e Compliancs |Lnl Procrams
o Compibe Sie

o Dlata Shoee Dama

o Diginbubgd e

& Enbancamart

o Exmendinrg Type

o oifigne

o Nitlaiae Cas

= Dillalse Cvia S1ore
o hifatwe Espendire
o Dihalve Procass

o Diligiae Bl

o Nilalse Sans

o Nifaive Sesten

o Org 5

Figure 7. APMS' Database Information stored in FMR.

Federated Metadata Repository (FMR)

The Federated Metadata Repository provides a centralized location where all state
agencies can store metadata. The IRM office maintains the FMR and it can be
accessed through the Internet. The primary objectives of the FMR are as follows:

e Provide a central location to define/describe databases and data elements,
enabling electronic compliance with the North Carolina Public Records
Law and North Carolina Government Information Locator Service (NC
GILS).

e Provide a resource for state employees and the general public to view how
other applications are storing and using data.

e Provide a resource for state employees and the general public to view
proposed and standard data element metadata.

e Facilitate data exchange using the North Carolina Service Broker (NCSB).

Data Modeling

The Data Modeling topic is designed to provide a basic overview of data modeling
for OLTP and OLAP systems. It is not designed to be comprehensive, but it is
designed to provide some best practices and implementation guidelines. There are
reference books and tools for data modeling to provide further information.

12

STATEWIDE TECHNICAL ARCHITECTURE

Data modeling is the process of defining a data model for a project or application
and is typically performed at the same time as the business model during the design
phase of a project. An example of a data model is shown in figure 8.

Figure 8. A sample data model of an order entry system.

The roles and responsibilities related to the business model are as follows:

‘Function ‘Personnel
Analyst Database Analyst |Programmer
(DBA)
Analyze/Document Primary Provide Support
Process
Create Business/Data |Primary Provide Support
Access Rules
Create Logical Data |Provide Support Primary
Model
Create Physical Data |Provide Support |[Primary
Model
Build and Support the Primary

13

http://irm.state.nc.us/techarch/chaps/chap4-25.gif

STATEWIDE TECHNICAL ARCHITECTURE

Database

Create stored
procedures only if
necessary (see Data
Access
Implementation
Topic)

Program Business
Rules/Data Access
Rules in the middle
tier(s)

Provide Support Primary

Provide Support Primary

Table 1. Roles and Responsibilities for Data Modeling

A data model is a framework used to collect and analyze data requirements and
consists of entities, attributes, relationships, and cardinalities:

e An entity is a person, place, thing, or concept and becomes a table in the
database. A citizen is an example of an entity. A row in a table is an instance

of an entity.

e An attribute is a characteristic that provides further information about the
entity like who, what, when and where. It becomes a column in the
database. A key attribute, or primary key, uniquely identifies an entity; so
the values are distinct for each individual entity. Examples of primary keys
are Drivers License Number and Serial Number. A key attribute in a
database cannot be null. A non-key attribute further describes entity but
does not uniquely identify the entity (e.g., female, sedan, blue). A non-key
attribute can be null in a database.

e A relationship is how one entity is related to another. A relationship is
shown through verbs or verb phrases because a relationship represents an

nmn

action. Examples of relationships are: "owns/owned by", "insured
by/insures". When a relationship is established between two entities, there
is a parent entity and a child entity.

e Cardinality is how many occurrences of an entity to expect in a relationship.
There are two types of cardinality, conditional and unconditional.

Conditional cardinality is where a relationship may or may not exist. The child
entity is not required. Conditional relationships are defined as follows:

e Zero, one or many (e.g., a citizen owns zero, one or many vehicles).

e Zero or one (e.g., a student can register no vehicles or only one vehicle to
park on campus).

14

STATEWIDE TECHNICAL ARCHITECTURE

Unconditional (mandatory) cardinality is where a relationship always exists. In this
case, the child entity is required. Unconditional relationships are defined as follows:

e One-to-one (e.g., a county has one and only one county seat).

e One-to-many (e.g., a school has one or more teachers).

e Many-to-many (e.g., a classroom can be assigned to many students and
students can be assigned to many classrooms). Many-to-many relationships
can be simplified through an associative entity (e.g., a classroom-student

entity).

e One-to-Specific-Number (e.g., one student has exactly 6 classes).

An identifying relationship connects two dependent entities. For example, a vehicle
would not be in the database without an owner. It is usually indicated in a data
model by a solid line. In an identifying relationship, the foreign key becomes part of
the primary key.

A non-identifying relationship relates two independent entities (e.g., an insurance
company can exist in the database without a vehicle associated with it). It is usually
indicated in a data model by a dotted line. The foreign key becomes a non-key
attribute and is not part of the primary key. A recursive relationship is where the
entity is both the parent and the child and the relationship is non-identifying. An
example of a recursive relationship is where a product can be constructed of
multiple products stored in the same table.

Logical vs. Physical Data Modeling

Logical data modeling is a business perspective of a project's data that is
independent of how it will be stored in the database. It describes the business data
requirements in a format where business users can understand it.

Physical data modeling is a data model that directly represents the logical data as it
will be stored in the DBMS. The physical model is derived from the logical model.
The methods for migrating from a logical to a physical model are as follows:

e The entities become database tables and the attributes become database
columns.

e Data types and field lengths are defined for each attribute.

e Indexes are created and system-enforced referential integrity rules are
defined.

e Data definition language (DDL) is created to define the database and
associated tables.

e The tables are populated with domain values, which are the pre-defined
values for particular attributes (e.g., colors or models).

15

STATEWIDE TECHNICAL ARCHITECTURE

Different types of data modeling techniques are used for online transaction
processing (OLTP) and online analytical processing (OLAP). OLTP typically uses
Entity-Relation (ER) Modeling, where OLAP typically uses a combination of
dimensional modeling and ER modeling. Most OLAP products and many other
front-end user tools require a star or snowflake schema. For more information
about OLTP and OLAP, refer to the introduction of this chapter and the Data
Warehouse Architecture chapter.

Entity-Relation (ER) Modeling

Entity-relation (ER) Modeling produces a data model of entities, relationships, and
attributes. A primary goal of ER modeling is to reduce or remove data redundancy,
where the same data is stored multiple times in a database and is therefore difficult
to maintain data integrity. It is used for OLTP because it simplifies transaction
complexity. For OLAP processing, ER modeling is used for the transaction capture
and data administration phases of constructing a data warehouse. ER modeling
should be avoided for end user delivery of OLAP applications. In this case,
dimensional modeling should be used.

Entity-relation (ER) normalization is a method that organizes attributes to form
stable, flexible, and adaptive entities. ER normalization has many levels, but most
data models are normalized to the third level and then denormalized where needed
for performance reasons. Each level is referred to as a normal form and the first
three levels are first normal form, second normal form, and third normal form. In
an ER model, transformation from the logical model to the physical model is
straightforward.

A simple example of normalizing data is organizing basic data related to a citizen
with county, vehicle, and vehicle insurance information. Figure 9 shows the data
fields and instance table that will be normalized.

16

STATEWIDE TECHNICAL ARCHITECTURE

“ICitizen Table

Citizen_ID
Last Name
First Mame
Micdle Initial
County
County Seat
YVehicle 1D #
Walke

Model

Year

Color

License Tag#
Insurance D
Insurance Mame

Ciigan Takle
£
_ j :
- ’ 3 = 4 = £
HI : |8 T |3 ¢
El = | 2|3 j‘ E 3 ; E
g8 |21 |z |3 |3 |58 f F @
i Eakst Pat | R | Mackianbuy Chatbaie [A3CTI34EE| Fond E apcia- E His | 220134 Huir
2 | Dpadeon | Gaml | H| Duiler Dubvimy | DSFaSEgEd | Chryider | Sapor g 15895 Faod | DEFIS4E Sidn Famn
Tare | Chie [40] Oiange | Chagel N1 [P0 S | Topuia | Cary |T000 (G| GHASE | © | GEILD
Davta | Chis [WW| Orende ChagzlHIll [PORSSTRE | Chivjelar | Jeap 15507 Hlack| J-LASET = A state
A1 M e [J 0 CGufer | Cescfedam | GHPRSET | S | 3300 [106F |Whic KWWOCSRTE | 4 | Srae Tim
B | Jotnmon| Fred | A Foisvin Fenston-Salem| JFLMARAT | G hean ol | & uburtan |16re] ey | Fakaemd | o [E S]]
E | Jines |domes| E | Cabmbis | WheeAle [WAD4eErAS| Acka | begm | 1991] Ton | BTLRED | £ A |
T M | Aon | F Wai P |FUERTE]| Roben | scceed |CO00| Sker| WASERD | D | Mblen |
F| Pawer | Ane [E| Waee fialmgh [WVAMESEA0T | Crewo et | Luomna | 1500[Whee) M2800R2 | ¢ Alzlnlm |
B | Smin | eba | T Frepsin LawsEnn | TR | tduteny |19] Aes] ACTmEE |3 | ftee famn |

Figure 9. Normalization example - Denormalized data model.

The first step is to take the model to the first normal form (INF). In the first
normal form, each attribute or column occurs only once for each instance of the
primary key. Since a citizen can own multiple vehicles, the vehicle data moves to a
new entity called Vehicle. (See Figure 10.) This way, the data for each citizen is
stored only once and multiple vehicles owned by a citizen can exist without citizen
data repeated. Characteristics of first normal form are as follows:

17

http://irm.state.nc.us/techarch/chaps/chap4-31.gif

STATEWIDE TECHNICAL ARCHITECTURE

—Vehicle Table
-
“lcitizen Table & Vehicle ID #
& Citizen ID & 2y, Citizen_ID (FK)
Last Marne masel
First Mame owne | YQ =
Midde Initial owned by ear
County Calor
Courty Seat License Tag #
Insurance_ |0
Msurance Mame
. o
Citizem Tahla
& g g % 3
s 2| = | 3 z z
] - = =
; | 8| 2 3 5 8
1 Eakar Fai R FocHaniung Charletln
£ Diawidzan | Canl H Ciwrhan Curharm
El Diavia Chrs W Cmng Chapel Hl
i Oaoe dane J Guilfiord Grearzhon
3 Junnson | Fred i Fusyl [Winsor-Sakm
] Janes e E Golumbae Wihiexille
T Parear An1 E Wiake Faleigh
] Ernith Juhin T Frankin Louisburg
Wehide Table
=
5 1
E — E E
£ g g |G S
P HE
: R g 3 3 £ Bo|E|
= [= = P i 3 E E
AL 23450 1 Ford Tsurus 154 Eilug: SHA L] B Aurn
| 2 Chiryslar Selining 1285 Ruil OCrza4a] 4 Slala Carn
HFIEEARD 3 Tayeta iy 1297 I=ragn FHIEAEE | 3 GEICDO
POREETRA4 a Chryslar Janp 1982 Slarck J dFAT S Allsiate
GHIEIMERT 4 Bl 3205 E:ELi] “hile MHCEERS] 4 | Edale Farm
JELHAERH i Chevralet | Suturban 15972 ey PORGTES] 3 GEICO
rNCHSETES (5] Aclne Inie 1741 Tar STUTER] | 5 Hurmn
CMIBGTax0 7 Hordas Ao 270 Silvar SATE01 | 2 Allstake
WETEH0 7 Cheuralat Lurira 1283 Whils WasDoid] 3 Lllstate
TUw730012 8 Fard It any 1299 Black BCO0Z3l 4 | State Fam |

Figure 10. Normalization example - First Normal Form (1INF).

The next step is to take the model to second normal form (2NF). Second normal
form starts with the first normal form model, then any partial dependencies are
removed so all the non-key attributes are fully dependent on the composite primary
key. In the example, the insurance company is not dependent on the composite
primary key, so it is put into a separate entity. (See Figure 11.) By definition, a
model is already in second normal form if it only has a single attribute primary key.

18

STATEWIDE TECHNICAL ARCHITECTURE

Icitizen Table “Jvehicle Tabje
. Citizen_ID & gﬁkh‘ IIDD TFHI
izen
Last Hzme f = Oinsurance Talble
First Harme — Insurance_I0 {FK) & breorance D |
Middle Iritizl [pume pe® Make jnsured by [, uranee
oLty fModel ures Insurance Mame
County Seal Year
Colar
License Tag %
4
Cilizan Takla
=]
E 2t | wE |3z ¢ £
5 5 | E5 [§E | & 35
1 Baher Fal k LK ERILIN Chedale
A Lizuid=on Lizrol [H Llurteam Luthan
o] L= hns L Jrange Laapel Hill
4 Dica Jane J S lbd Gl rsboic
5 duhreaor Frad A Fursylh sl o Galern
] Jonaz Janon E Lolumnbus “hiierelln
7 Farkmr ALY T Wirgka Sanich
E Emih Jahin T Frankln Louizhurg
Wehide Tahle
Iy =
£ = = ; -
-
is] - = - § £3
£t g | | E g 2 E | 3ie
52 5 S £ : 4 : £3%
AEL] Sk 1 Ford Tauns 1454 Hug AT A5 ba]
| B) £ Chrysle Salving 15335 Radl [e 4
T oI a Toyula Fanmry 1837 Gasen FHO45E d
PLRIOEL a Chrosla deap 1532 Clacl JHLAGET 2
SHEFA5E7 4 BRI Ad0=i 1938 WihHa MEICEETS al
JELIASETE & Chenrolal | Sabuban 1672 Zroy POIRE TS0 3
Rl TS AT Fi Orira Ii=gra 1931 Tan STLUTEAN A
ETLERTADT T Heda Amearnd amn Sivar A0 3
WAHET RSN ki Cherolat | Luming 183 Wihite A0 2
T TRA0T] B Furd Musiam 1539 Elack Bnniza 1
Insurance Takle
2z -2
EE EL
=g =5
el =])
2 All=tate
3 GEILD
q Stae Farm
1 Huran

Figure 11. Normalization example - Second Normal Form (2NF).

The final step is to take the model to third normal form (3NF). Third normal form
starts with the second normal form model and then modifies it so that no attributes
depend on any other non-key attributes. As well, there are no attributes calculated
from other attributes. In third normal form, all attributes are dependent on the
primary key and only the primary key. In the example, the county seat is dependent
on the county, so a separate county entity is added. (See Figure 12.)

19

http://irm.state.nc.us/techarch/chaps/chap4-37.gif

STATEWIDE TECHNICAL ARCHITECTURE

__Wehicls Tabls
iciszen Table [74 vehlele 1D &
EICounty Tabls £ Citzen D | CMzen 10 [FK] = insusancs Tabls
8, County hasi County [FKE [:::.rtl‘lﬂj [Fih aured by S Insurance, |D
= Tivesin | Lactbame S pd s GUMeE 7| Inteaeen Moens
ity Seat Pl A Ea e MR
i First N fP0TIE : e
Il il T
i [if
Ieeme Tag g
Litizon Tablo
=
| o o -
3 i3 1§ £z | I
E - Pl 235 S e |
1 Figsar Pl B Kierklebarg
2 Cranidza Cam H [y |
3 Do Ltk ol Jrawe
] [oe -lans] Cailfee
B Jeknsen el £ Foremih |
[} Junes Jamies S Colabus
v ey A E Wik
i1 Snih il T Fraik
Lty Talle
g :
Colurbur lnain
Dirham Thahan
"orsvh Wncion-Eadom
Fuanbin rviskmg
Zufod Fesrcton
Frecklanang Chalanz
Liainze Crimaz il
Wb Rkt
‘rhivie Tutids
=
= =] ! 2
-
& ' H
i ‘B g § 3 ERE
2 & 2 8 S |E&E
DEL 12 | Fard S Bua |AELT23 o
(R e 7 Clipsla: H¥ Rail CEFTMA 4
2 1 Toygaa C =] | lErpan | HAES i
ERRSTFES 1 Clapels: [ETh hSEn Hack B 00T]
GHXIEET [l [0 20 ME | Whee [WRCEES []
KL% 3 Clrewrni S.burban [0 Gty |PORETRE 3
| T =] [Aout ez T | Ten [STUTEA 3
ZTLEETEE0 T il Accond 07 Sike|WRNEEEDD]
S AN i K= Lamina T4 L O s TH o
TR0 2 A Ford Flazkaing T Aaik |[ROTA 25 i
wwranes Iable
I g
£ E
i L)
] IEEI
3 GECT
] SiEs Fam
] Hren

Figure 12. Normalization example - Third Normal Form (3NF).

Once a model has reached third normal form, any variation from that form is called
denormalization. Queries against an ER model typically require the joining of two
or more tables together. The more joins required for a query, the more chance of
performance degradation. Denormalization is sometimes necessary in a data model
to increase the performance of data access.

STATEWIDE TECHNICAL ARCHITECTURE

Dimensional Modeling

Dimensional modeling is a more abstract data modeling technique than entity
relation modeling, using facts, dimensions, hierarchies, and attributes like how
much, how many, and how often. Dimensional modeling is used to design
databases that support ad hoc queries in a data warehouse environment.

In a dimensional model, data is denormalized and stored redundantly. Even though
duplicate data takes up more space, it reduces the number of joins required to
process a request, so it reduces the processing time required. In addition, indexes
can be pre-built to support anticipated queries. Summary and calculated data can be
provided as well, reducing the amount of time to calculate and summarize data. If
there are a large number of rows, horizontal partitioning can be used to split a large
table into two different tables at the row level. If the data has a large number of
columns, vertical partitioning can be used to split a table into two different tables at
the column level.

A dimensional model is composed of the following:

e Fact table. A fact table is a set of facts grouped together, defined with a
multi-part primary key and usually consisting of multiple foreign keys. Most
fact tables contain one or more numerical or additive measures, or "facts,"
that occur for the combination of keys that define each record. Most useful
facts in a fact table are numeric and additive. Data warehouse
applications/users rarely retrieve a single fact table record. Typically, they
retrieve hundreds, thousands, or even millions of records at a time, and the
ability to add up the data (additivity) is essential.

e Dimension table. Dimension tables most often contain summary or
descriptive information that relates to a fact. Dimension tables are
descriptive attributes about the facts can be grouped into one or more
common structures

e Schema. A schema is the diagram of how the entities relate to each other.
Common schemas are star and snowflake. A star schema is an arrangement
of entities with a central fact table and related dimensions, and is usually
used to build data marts. A snowflake schema is an arrangement of entities
similar to the star schema but has additional secondary dimensions, and is
typically used in data mining functions.

For a dimensional model example, a fictional data mart will be created for student
test scores. In this example, time, school, student, grade level, and curriculum will
be tracked. Figure 4-13 shows the sample star schema that could be used.

21

STATEWIDE TECHNICAL ARCHITECTURE

":::_T;ﬂlgansmn A drace_Difmanms on
& Grode_Level 1D
- Crsde Hambs
i VEact_Tabis i
7 =, Time_K01{Fl]
&, Bchool |0 + &, Schaoi_ID iFl)
— 2, Studenl_ID (FH nabon
B & rracle Leeel 10 (FR} A Cairee ity Pl esbay
Gehnn Type &, cursulim D FEN F % Curteuum_i0
Dizmit_Thame f Tant Eerim = Cumieckim Kama
F Stucent_Dimensicn < bl
=,
& Sudens_ID ~
Aok Mame e
Shucem foe
Stuceri_Frodle

Figure 13. A sample star schema dimensional model.

Snowflaking adds hierarchical dimensions to the star schema by placing additional
text attributes or columns into secondary dimensions. For example, snowflaking
would add a District dimension table that extends the School dimension. Using the

sample star schema, by adding a dimension, a snowflake schema begins to emerge.
(See Figure 14.)

 Grote_Dimenslon

B, Grads_Lesal_ID
e
. [T
[TFact_Tabis - A= e
F Falipel_Dimermsisn & Time_i [FK] o
Dyt _Dimuuzan & Baheal D | L Seresl_m FK) :
& bav 0 FY 7 =, Erader_ID Fl) 4
e | Schonl_Hams &, Arade_Level IDHFH)
Scheal_Addma #, Currlzulum_iD Fi)| Furledum Cimensisn
Eachonl_Typa B Dt DFE B Cumcuinm_jD

-

Cetdrict_hama / Tos S
% Shudent_Dirsnalon
L Siushre_ID 4
Sudenl_Msme

udent_Ape
Skt Prefi

um i _Hama
b Tas

Figure 14. The emergence of a snonflake schema.

An extended snowflake schema makes use of multiple fact tables. As data models
become more comprehensive, more fact tables will be defined. Large queries can
use two or more fact tables linked by multiple dimension tables. The join of
multiple snowflake schemas is referred to as a "snow storm".

Database Management System (DBMS)

Data is organized and managed through a database management system (DBMS).
The database organization can be relational or non-relational. A DBMS manages

data storage, structure, access, and security. Fields can be indexed to improve the
performance of queries against the data, comparable to how a dictionary has tabs

http://irm.state.nc.us/techarch/chaps/chap4-45.gif

STATEWIDE TECHNICAL ARCHITECTURE

for the letters of the alphabet so that it is easier to look up a word, or a reference
book has an index to quickly find information needed.

A relational database management system (RDBMS) is a collection of data
organized into related tables so relationships between and among data can be
established. For example, a vehicle database can contain two tables, one for
customer information and one for vehicle information. An "owns" relationship is
then established between the two tables (e.g., "John Smith" owns a vehicle with the
identification number "AB1CD234EF567890". (See Figure 15.)

Costomer Table
Cuxtome- IO i Acdd rmcex iy
— AT 120 Hahn Smth 125 wlain Straat Anit
FL2TEI4 Hil Smith 125 belmin Strust lAnytonn
CR4aBx bl ane broe 358 G omer Awenue JAnodhedmun
Rz 67 Frank Jone=s TAS Braad Sireet JAnadherdomn
=’
Owrmd by
wahide Tahla
[vahlcia ID Wahlala hiuka b chal color
L 1SR COIAE MGTEE0 Ford Es part [\ hHa
|~B1C023<E PABTSE Cheviolat Cavallur Elua

Figure 15. Relational Tables

Relational databases are specifically designed to store normalized data. Normalized
data is organized so that unique data is stored only one time, instead of multiple
times for each table (e.g., a non-normalized data). A relationship is established
between the unique data and its related information. (See Figure 16.)

23

STATEWIDE TECHNICAL ARCHITECTURE

Hon-Hormallzed Data
Unique Infonnation duplicated in sach record

Customer Tahle
Customer ID MEme Arldress Chy
RAF1B50 John Smith 123 hain Street Arytowm
27521 Jill Smith 123 Main Sireat Anytoon
CR45R34 Jane Ooe dBE Comer Avanue (Anothedown
DR213ET Frank Joneg 7B Broad Stroat Anotherawn
Hormallzed Data
Unique information stored only once
Customar ID Hama Addroes ity
RAMEE John Srnith q ; = Anpt o
FYI?621 Jilamth |1 l_-izm"" Sireet T lénstharaen
L RASHAL Jana Llog [’l:ngElmad Street
DR aeT Erankopes |

Figure 16. Database Organization - Non-normalized vs. Normalized Data

For more information about normalizing data, refer to the Data Modeling topic in
this chapter.

When new databases are implemented in the state, relational database technology
should be used, because of the efficiency, flexibility, and compatibility associated
with relational technology. Relational databases should also be used when existing
(legacy) data stores are re-engineered. Non-relational technology, particularly flat
files, should only be used for unstructured data, textual data, and temporary work
storage. The relational technology is needed to support the other components of
the statewide technical architecture, including Application, Componentware, and
Middleware Architectures.

The Application Architecture recommends an N-tier design for applications. In an
N-tier design, data access services are implemented in a separate tier from business
rules and user interfaces. To maintain consistent standards for how data access
services access RDBMSs, and to ensure the same standards for end uset access to
data, all data access to the new relational data stores must be through ANSI-
standard SQL, not proprietary SQL extensions. (See Figure 17.)

24

STATEWIDE TECHNICAL ARCHITECTURE

User Interface

Business Rules

Data Access Rules

oi-il-u
oa-il-u

Figure 17. ANSI-standard SQL. Access.
Replication

Replication is used to keep distributed data up to date with a central source
database. Replication uses a database identified as a central source and reproduces
the data to distributed target databases. Replication services are available from most
relational database vendors. Applications and end users must access replicated data
in a read-only mode. If updates are allowed on replicated data, data can quickly
become corrupted and unsynchronized. Updates must be directed to the database

STATEWIDE TECHNICAL ARCHITECTURE

access tier in charge of updating the authoritative source, rather than a replicated
database.

Object Database Management System (ODBMS)

In conjunction with object-oriented programming languages like C++, Java, and
Smalltalk, another database structure is emerging called ODBMS. This type of
database technology can be used to support data with very complex and
nontraditional relationships. Since the ODBMS market is still considered a niche
market, a waiver must be obtained in order to use this technology.

Although most object-oriented applications use relational databases to store and
manage data, some use object databases to store data in the form of objects. Object
databases store data in the same model and format as the object model, providing a
seamless integration of objects and data. Objects in an ODBMS imitate the
attributes and characteristics of the objects in real life, so it is easier to support
more complex relationships and data types. When using a relational database with
an object-oriented application, an object-relational mapping is required that maps
the objects to the relational model.

A drawback of using ODBMS is that since the object defines each data type, data is
stored in a proprietary format and the data cannot be understood without the
object code that describes it. If new relationships between objects develop, adapting
the object code may be difficult.

ODBMS is used in cases where the data model is very complex and unable to be
mapped in a traditional relational format. The object database understands object-
oriented concepts such as class hierarchy, inheritance, encapsulation, and
polymorphism. ODBMS is typically used for complex systems such as
manufacturing, hospital record processing, financial portfolio risk analysis, and
telecommunications applications. Since this technology is still emerging, RDBMS
technology is the standard.

Although some of the relational database vendors have extended their relational
database technology to add support for storing objects it is still not possible to
anticipate the impact this type of technology will have in the DBMS market space.

Data Access Middleware

Data access middleware is the communication layer between data access rules and
the data itself. Data access middleware is designed to enable communication
between a data access tier and a database, as opposed to application communication
middleware, which enables communication between the programming tiers of an
N-tier application. (See Figure 18.)

STATEWIDE TECHNICAL ARCHITECTURE

Uscr rterface M

Liz=sr
2 Pre==ntation
Tiar

A polcation
Cornmu nlcation
Middiewsare

Busingss Rules

BLSiBss
- Rues
(=1g

A DpICELn
Coormnmu nication
Middieware

Diata
- ApcEaa
Ier

Dxeka
Beress
W] Al ieraing

| ¢}
Tier

Data Accass Rules

oi-il-a
oi-il-0

Figure 18. N-tier application environment

Database-Specific Middleware Drivers

Structured query language (SQL) is a query language used to query and retrieve data
from relational databases. The industry standard for SQL is ANSI Standard SQL.
SQL drivers are implemented by each RDBMS vendor to enable database access to
its proprietary database (e.g., SQL*Net is Oracle's SQL driver, Open Client is
Sybase's SQL driver). Vendors may add extensions to the SQL language for their
proprietary databases.

http://irm.state.nc.us/techarch/chaps/chap4-50.gif

STATEWIDE TECHNICAL ARCHITECTURE

Open Database Connectivity (ODBC) Drivers

Open database connectivity (ODBC) drivers are the middleware used to connect
database access rules to relational databases through the use of a generic application
program interface (API). ODBC drivers are vendor-provided and allow databases
to be connected and used by a generic interface. The ODBC drivers enable access
to data and provide insulation between a program and the specific RDBMS
language used by each database. Database access tools and programs do not have to
be customized for each database, because an ODBC configuration file maintains
the database connections. ODBC is language-independent; so many different
programming languages can use it.

ODBC can be implemented as a client-based solution or an application server-
based solution. The application server-based solution is recommended by the Data
Architecture. (See Figure 19.)

Otz focess Wddlesare
CUEC Exampis

Broplication Server [imbal e Cecwms

Doty Aoviss Rrdus

- from
Cosheermr
- whene
Hal i #
o frars
Proehacd
- wiwrs
Caisharc-Deechic Paskar Sedhic
AT ERET O "

et

Figure 19. A sample application server-based SQL solution using ODBC

Note: For application access to data, refer to the Application Architecture chapter.
For more information about application communication middleware, refer to the
Application Communication Middleware Architecture chapter.

OLE DB

ODBC is part of the COM+ Microsoft specification called Object Linking
Embedding Database (OLE DB). OLE DB provides specifications for an object-
oriented API to access relational and object-oriented databases. Microsoft
introduced OLE DB as a universal technology to query and update data in all
databases of an enterprise, regardless of where and how the data is stored. Both
relational and object-oriented databases are supported by the OLE DB
specifications.

http://irm.state.nc.us/techarch/chaps/chap4-51.gif

STATEWIDE TECHNICAL ARCHITECTURE

Data Access Implementation

Since data is at the core of most applications, data access is a vital component of
the Data, Application, and Componentware Architectures. Depending on the
application, data can be stored and accessed in numerous databases in multiple
locations. When data is centralized or when data is distributed across an
organization, data access must be carefully implemented with usability, accessibility,
cost, performance, adaptability, and security in mind. This topic provides an
overview of the different types of data access and discusses practices and guidelines
to use when implementing data access including:

e Opverall data access methods

e Specific data access methods

e Data integrity

e Data access design considerations.

Overall Data Access Methods

In a typical n-tier environment, the programs that perform data access are separate
from the programs that perform business rules. Depending on the location, format,
and owner of the data to be accessed, any of the following methods may be
appropriate (See Figure 20.):

1 - Data access through data access rules. Programs performing data access rules
can be executed as part of an n-tier application.

2 - Remote data access through the North Carolina Service Broker (NCSB). The
NCSB can be used for inter-agency and intra-agency data sharing. In this case, the
data is not accessed directly by the requesting application, it is accessed through a
shared service.

3 - Remote data access through a shared agency service. An agency may have an
existing service that can be called for data access. As is the case with NCSB, the
data is not accessed directly by the requesting application, it is accessed through a
shared service.

4 - Data access through a stored procedure. A stored procedure in a database can
be called from an application or embedded SQL to perform data access. Stored
procedures are not recommended as they create logic that is specific to a particular
vendor and do not support vendor neutrality.

STATEWIDE TECHNICAL ARCHITECTURE

I
L+]
" ﬂ
Nk Wser Dusiness [IF]
L Presentaiion s= Rules == Acpess
S Loyer Lajer Layer

Figure 20. Applrcation Architecture and Examples of Data Access.

Specific Data Access Methods

Data access can be implemented through various methods, including:

Embedded Structured Query Language (SQL). Embedded SQL (ESQL) is a
program that contains a combination of SQL statements and other
application query logic to process a request. Embedded SQL can be
dynamic or static. When embedded SQL is used, a multi-step compile
process is required, where the SQL is pre-compiled before the host
language program is compiled.

Static Structured Query Language (SQL). Static SQL is embedded SQL
written into the source code of an application that does not change during
application execution, (i.e., it remains static). Static SQL is used when the
data access requirements are known during application design and compile
time. Static requests are typically more efficient than dynamic SQL.
Dynamic Structured Query Language (SQL). Dynamic SQL is embedded
SQL that is built at application run-time. It is not written in the application
source code, the SQL statements are composed when the application
executes based on client input. Dynamic SQL is used when data access
requirements are not known at design and compile time. Dynamic SQL is
typically used in OLAP style applications, such as spreadsheets and ad hoc
access. Dynamic SQL can generate a significant impact on performance and
security.

Call-Level Interface (CLI). A call-level interface (CLI) is a library of DBMS
functions that can be called by an application. CLI is an alternative to
embedded SQL and is typically used in n-tier application design, where the
business rules and data access rules are separate from the database server.
CLI can generate a significant impact on performance and security.

30

STATEWIDE TECHNICAL ARCHITECTURE

e Stored procedures and triggers. Most database vendors provide the
capability to store logic and data access rules in a stored procedure or
trigger. Stored procedures are programs embedded in a table that can be
called by an application. Triggers are programs embedded in a table that are
automatically invoked by updates to another table. Stored procedures must
be avoided, because the use of stored procedures creates database vendor
lock-in. Since the stored procedures are stored in the database and are
database-specific, they are not easily migrated if a new database platform is
selected.

Data Integrity

Data integrity can be maintained by the DBMS or maintained by the application.
Therefore, data integrity can be implemented inside the database and through data
access rules.

e [Entity integrity keeps duplicate records from being inserted in a table and is
enforced through primary keys and normalized database designs.

e Domain integrity means that only valid values are entered into a field. It is
enforced through foreign key constraints, column-level rules, or lookup
tables.

e Referential integrity is making sure that no foreign keys point to records
that do not exist. It is enforced using foreign key constraints.

e Business rules integrity is applying additional rules to data as it specifically
relates to the business. These rules may cross column, row, and even table
or database boundaries.

Design Considerations

Unless the database technology is outdated or there are performance problems with
the selected database, the database platform is usually a stable environment,
changing infrequently. However, data models are much more volatile. Data models
change almost as frequently as the business needs change. Therefore, it is important
when implementing data access to ensure the infrastructure and data access logic is
casily adapted to changes in data models and business needs.

In order to properly separate the data access tier from the business rules tier,
consideration must be given as to how much the application would be impacted if
the data model or the database platform changes. If there is a high impact, the data
access rules are more tightly coupled with the business rules; therefore, the data
access design is less adaptable. If there is a low impact, business rules are loosely
coupled with data access rules; therefore, the data access design is more adaptable.
It is important to design an application so that there is a low impact if the data
model or database changes.

31

STATEWIDE TECHNICAL ARCHITECTURE

Outside applications should have no direct access to data. When data sharing is
required, there are two basic options:

North Carolina Service Broker (NCSB). NCSB is a statewide facility
designed to share common services and share data across the state. The
NCSB can also be used inside of an application or within an agency. It is
extremely useful in custom-designed applications where the application can
be designed to use the messaging and service capabilities of the NCSB.
The state's interface engine can be used in instances where the source code
is unable to be modified or the data layouts are unavailable. It is an
unobtrusive interface to accomplish data sharing.

For more information about NCSB and the interface engine, refer to the
Componentware and Integration Architecture chapters.

When designing an application, particularly one that will be accessed through an
Intranet or Internet, there are several design considerations:

Performance. What are the performance needs of the end user?
Availability. When does the application need to be up and running? How
long can database be unavailable or unresponsive?

Scheduling/Batch windows. What intervals are scheduled to execute batch
processes, such as batch processing? What happens if the batch process is
unable to finish in the allotted time?

Backup. If an application requires 24X7 availability, a special database
design needs to be considered; allowing backup of the database while it is
still running.

Replication. If replication is involved, how will the replication occur, (e.g.,
near real time, houtly, every night, etc.)?

Language. Evaluate the data requirements and the needs of the end users to
see if multi-lingual options need to be provided and how.

Data Security. What are the data security requirements for the data? For
more information about data security, refer to the Data Security topic.
Database Recovery. How to achieve business continuity if something
happens to the database.

Disaster Recovery. How to achieve business continuity if something
happens to the hardware or facilities.

32

STATEWIDE TECHNICAL ARCHITECTURE

Data Security

The state's data is a very valuable resource, and establishing a secure data
environment is a key component of the Statewide Technical Architecture,
particularly since more and more applications use the Internet to access data. It is
critical that the state's data be protected against any unauthorized access.

Data security is designed to protect data against the following threats:

e Unauthorized use of the database or application.
e Accidental modifications and deletions.

e Confidentiality and integrity breeches for data in data transport and physical
storage.

e Disasters.

Many new Internet applications are being developed as part of e-commerce
initiatives. It is imperative to ensure that any access to data is performed by
authorized sources. Implementing and monitoring security policies are crucial for
each project and across the infrastructure.

There are various security models that can be deployed when implementing an
Internet application. The appropriate model to deploy can be determined primarily
based on the security requirements of the data being accessed (see Figure 21).

e A low security model only publishes basic information to the Internet.
Typically no database is present in this model.

e A medium security model typically consists of data access methods and
dynamic web pages. Application services are located on the internal
network and only authenticated processes will be allowed to access
databases behind the firewall. In this model, a replicated database may be
located in the demilitarized zone (DMZ), but the authoritative source must
be behind a firewall. Impact from security incidents on replicated data is
minimized if the database in the DMZ is periodically refreshed from the
authoritative source.

e A high security model is typically implemented when confidential, private,
or protected data is accessed. This model provides access to restricted
databases behind firewall by authenticated processes only. Data deemed
confidential or private might need to be encrypted during transmission. In
this situation, a Secured Socket Layers (SSL) connection or a Virtual Private
Network (VPN) using technologies such as IPSec is recommended. The
database must not be replicated in the DMZ.

33

STATEWIDE TECHNICAL ARCHITECTURE

For more information about security, refer to the Security and Directory Services

Architecture chapter.

Eremazl
L L]

P sl Ha

Y\ kb ':'TP'“"'“ Sanirky

+ FPapgse i Ird=rf=cs

|

L o Urdiaw Higk '

TN masrk LT
Mairl Wadel Mairl [
R Faplicied Dzaf.r"

.
e

Figure 21. A sample security model including firewalls.

M
A Frawal;

I

II\"-. 5
'_I __..-"

-

Security services are key to data security. As discussed in the Security Architecture,

security services comprise the following processes:

e Identification. The process of distinguishing one user from all others.

e Authentication. The process of verifying the identity of the user.

e Authorization and access control. The means of establishing and enforcing

rights and privileges allowed to users.

e Administration. The functions required to establish, manage, and maintain

security.

e Audit. The process of reviewing system activities that enables the
reconstruction and examination of events to determine if proper procedures

have been followed.

For more information about security, refer to the Security Services chapter.

In many applications today, authentication is handled by the application when the
user first connects. This practice is used to minimize user account administration,
so a user account is defined centrally, and accounts and passwords are not
maintained in multiple locations. In the back end, when databases are accessed, a
generic user account is used instead of a specific user account for authorization
purposes. (See Figure 22.) When this method is deployed, it is important to
implement an audit process within the application to ensure that the activities of

each user are captured.

34

STATEWIDE TECHNICAL ARCHITECTURE

When a generic account is used, the individual account is not automatically
communicated to the database and tracked in the transaction log. Without an audit
process in place, when a record or group of records is updated or deleted, it may
not be possible to know which user performed the modifications. When a true
threat is realized, it is important to be able to recover the lost data and track the
user account that was used inappropriately. A best practice for the application is to
capture key information about each user who modifies or deletes records. This
information can be stored in the database, capturing old and new information, or
the deleted record, along with transaction activity for an update or delete of a
record. An audit process may not be necessary during a read-only transaction, as
the data is not being modified, unless sensitive data is involved.

MRk

Uner JERAITH sre Ul 3 Ehared

Fasmand Zuery dor Lam A
Frofle Chik .'l ErdTH
A . [acooun /
T
T e Y cail
Llaey Ausdness {5 1E]
. Inérenat ; z Presontollios — Rulee - Aoz |
LR Loy L wpuni Lunysin
=L
-
L 1
. I
L
Satchnic ol T'“ v “": '-':'ll " o dwla mevew lapurank sws
Liaar by i wdthy "r:__'r::;_'lu -':'r'_l ""_”_:"' tha imar W s
P v b - "_ + 1k LT 1 W
niwicil urer e e) Lt e Tha rauamiar can
AL ORI L LN B phaE ahng iaer dato s @ising

[RITEAC @ZCaNim P S 4ELL "
FE B EEELE

HL L H

Figure 22. A generic user exanple

Implementing backup and recovery procedures is also a crucial process for data
security. A backup can limit the loss of data that may occur due to disaster, theft,
intrusion, or accident. Data stored on laptops must also have a backup and recovery
plan and key information must not be stored on a laptop without encryption or
password protection.

Protecting a database server is also a consideration when implementing and
supporting a database. It is possible to protect a database from unauthorized access.
Tools such as security access control and intrusion detection software can scan
servers for potential weaknesses and detect inappropriate use as it occurs such as
multiple invalid login attempts.

35

http://irm.state.nc.us/techarch/chaps/chap4-58.gif

STATEWIDE TECHNICAL ARCHITECTURE

A firewall can also be used to protect a database server. A firewall can limit the
access to a server by restricting the addresses and/or requests to the database
server. For example, only certain programs can be allowed access to the server,
restricting individual ad hoc usage. Access can be limited to specific application
servers or processes as well.

36

	Mission Statement
	Federated Metadata
	Federated Metadata Repository (FMR)
	Data Modeling
	Database Management System (DBMS)
	Data Access Middleware
	Database-Specific Middleware Drivers
	Open Database Connectivity (ODBC) Drivers
	OLE DB
	Data Access Implementation
	Data Security

